

PERIYAR UNIVERSITY

NAAC 'A++' Grade – State University – NIRF Rank 56- State Public University Rank 25

SALEM - 636 011, Tamil Nadu, India

CENTRE FOR DISTANCE AND ONLINE EDUCATION

(CDOE)

B.SC COMPUTER SCIENCE

SEMESTER - II

CORE COURSE: MICROPROCESSOR AND

MICROCONTROLLER – LAB

(Candidates admitted from 2024 onwards)

PERIYAR UNIVERSITY

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE)

B.Sc COMPUTER SCIENCE 2024 admission onwards

CORE COURSE – III

Microprocessor and Microcontroller-Lab

Centre for Distance and Online Education (CDOE)
Periyar University, Salem – 11.

Prepared by:

LIST OF CONTENTS

UNIT CONTENTS PAGE

I Addition and Subtraction

1. 8 - bit addition

2. 16 - bit addition

3. 8 - bit subtraction

4. BCD subtraction

II Multiplication and Division

1. 8 - bit multiplication

2. BCD multiplication

3. 8 - bit division

III Sorting and Searching

1. Searching for an element in an array.

2. Sorting in Ascending and Descending order.

3. Finding the largest and smallest elements in an array.

4. Reversing array elements.

5. Block move.

IV Code Conversion

1. BCD to Hex and Hex to BCD

2. Binary to ASCII and ASCII to binary

3. ASCII to BCD and BCD to ASCII

V Simple programs on 8051 Microcontroller

1. Addition

2. Subtraction

3. Multiplication

4. Division

5. Interfacing Experiments using 8051

 Realisation of Boolean Expression through ports.

 Time delay generation using subroutines.

 Display LEDs through ports

 Periyar University – CDOE| Self-Learning Material

 ADDITION AND SUBTRACTION

Section No Topic Page No

1

Addition and Subtraction

1. 8 - bit addition

2. 16 - bit addition

3. 8 - bit subtraction

4. BCD subtraction

8 - BIT ADDITION

AIM:

To perform addition of two 8 bit numbers using 8085.

ALGORITHM:

1) Start the program by loading the first data into Accumulator.

2) Move the data to a register (B register).

3) Get the second data and load into Accumulator.

4) Add the two register contents.

5) Check for carry.

6) Store the value of sum and carry in memory location.

7) Terminate the program.

 Periyar University – CDOE| Self-Learning Material

SOURCE CODE

MVI C, 00 Initialize C register to 00

LDA 4150 Load the value to Accumulator.

MOV B, A Move the content of Accumulator to B register.

LDA 4151 Load the value to Accumulator.

ADD B Add the value of register B to A

JNC LOOP Jump on no carry.

INR C Increment value of register C

LOOP: STA 4152 Store the value of Accumulator (SUM).

MOV A, C Move content of register C to Acc.

STA 4153 Store the value of Accumulator (CARRY)

HLT Halt the program.

SAMPLE INPUT & OUTPUT

Input: 80 (4150)

80 (4251)

Output: 00 (4152)

01 (4153)

RESULT

Thus the program to add two 8-bit numbers was executed.

 Periyar University – CDOE| Self-Learning Material

16 - BIT ADDITION

AIM:

To write an Assembly Language Program (ALP) for performing 16 bit addition.

ALGORITHM:

1. Initialize the MSBs of sum to 0

2. Get the first number.

3. Add the second number to the first number.

4. If there is any carry, increment MSBs of sum by 1.

5. Store LSBs of sum.

6. Store MSBs of sum

SOURCE CODE

LHLD 7601H Get 1st no. in HL pair from memory 7601

XCHG Exchange cont. of DE HL

LHLD 7603H Get 2st no. in HL pair from location 7603

MVI C, 00H Clear reg. C.

DAD D Get HL+DE & store result in HL

JNC LOOP If no carry move to loop/if carry then move to

next step.

 Periyar University – CDOE| Self-Learning Material

INR C Increment reg C

LOOP: MOV A, C Move carry from reg. C to reg.A

STA 7502H Store carry at 7502H

SHLD 7500H Store result in 7500H.

HLT

SAMPLE INPUT & OUTPUT

Input: 7601 77

7602 66

7603 44

7604 22

Output: 7502 BB

7503 88

7500 00

RESULT

Thus the program to add two 16-bit numbers was executed.

 Periyar University – CDOE| Self-Learning Material

8 - BIT SUBTRACTION

AIM:

To perform subtraction of two 8 bit numbers using 8085.

ALGORITHM:

1. Start the program by loading the first data into Accumulator.

2. Move the data to a register (B register).

3. Get the second data and load into Accumulator.

4. Subtract the two register contents.

5. Check for carry.

6. If carry is present take 2’s complement of Accumulator.

7. Store the value of borrow in memory location.

8. Store the difference value (present in Accumulator) to a memory location

9. Terminate the program.

SOURCE CODE

MVI C, 00 Initialize C register to 00

LDA 4150 Load the value to Accumulator.

MOV B, A Move the content of Accumulator to B register.

LDA 4151 Load the value to Accumulator.

SUB B Subtract the value of register B to A

 Periyar University – CDOE| Self-Learning Material

JNC LOOP Jump on no carry.

CMA Complement Accumulator contents

INR A Increment value of register A

INR C Increment value of register C

LOOP: STA 4152 Store the value of Accumulator (SUM).

MOV A, C Move content of register C to Acc.

STA 4153 Store the value of Accumulator (CARRY)

HLT Halt the program.

SAMPLE INPUT & OUTPUT

Input: 06 (4150)

02 (4251)

Output: 04 (4152)

01 (4153)

RESULT

Thus the program to subtract two 8-bit numbers was executed.

 Periyar University – CDOE| Self-Learning Material

BCD SUBTRACTION

AIM:

To perform BCD subtraction of two 8 bit numbers using 8085.

ALGORITHM:

1. Load the data from address 2051 in A

2. Move the data from A to C

3. Move the data 99 in A

4. Subtract the contents of registers A and C

5. Increment the content of A by 1

6. Move the data from A to B

7. Load the data from address 2050 in A

8. Add the contents of A and C and adjust it in BCD format by using DAA

instruction

9. Store the result at memory address 3050

10. Stop

 SOURCE CODE

LDA 2051 A <- 2051

MOV C, A C <- A

MVI A 99 A <- 99

SUB C A = A – C

INR A A = A + 1

MOV B, A B <- A

 Periyar University – CDOE| Self-Learning Material

LDA 2050 A <- 2050

ADD B A = A + B

DAA Convert the hexadecimal value to BCD value

STA 3050 3050 <- A

HLT Stop

SAMPLE INPUT & OUTPUT

Input: 72 (2050)

35 (2051)

Output: 37 (3050)

RESULT

Thus the program to BCD subtraction of two 8-bit numbers was executed.

 Periyar University – CDOE| Self-Learning Material

 MULTIPLICATION AND DIVISION

Section No Topic Page No

2

Multiplication and Division

1. 8 - bit multiplication

2. BCD multiplication

3. 8 - bit division

8 - BIT MULTIPLICATION

AIM:

To perform the multiplication of two 8 bit numbers using 8085

ALGORITHM:

1) Start the program by loading HL register pair with address of memory location.

2) Move the data to a register (B register).

3) Get the second data and load into Accumulator.

4) Add the two register contents.

5) Check for carry.

6) Increment the value of carry.

7) Check whether repeated addition is over and store the value of product and carry

in memory location.

8) Terminate the program.

 Periyar University – CDOE| Self-Learning Material

SOURCE CODE

MVI D, 00 Initialize register D to 00

MVI A, 00 Initialize Accumulator content to 00

LXI H, 4150

MOV B, M Get the first number in B - reg

INX H

MOV C, M Get the second number in C- reg.

LOOP: ADD B Add content of A - reg to register B.

JNC NEXT Jump on no carry to NEXT.

INR D Increment content of register D

NEXT: DCR C Decrement content of register C.

JNZ LOOP Jump on no zero to address

STA 4152 Store the result in Memory

MOV A, D Move the content of D register to Accumulator

STA 4153 Store the MSB of result in Memory

HLT Terminate the program.

 Periyar University – CDOE| Self-Learning Material

SAMPLE INPUT & OUTPUT

Input: FF (4150)

FF (4151)

Output: 01 (4152)

FE (4153)

RESULT

Thus the program to multiply two 8-bit numbers was executed.

 Periyar University – CDOE| Self-Learning Material

BCD MULTIPLICATION

AIM:

To perform the BCD Multiplication of two 8 bit numbers using 8085

ALGORITHM:

1) places H'04 in R6H as a counter that indicates the number of BCD digits in

the data; b. clears R2 and R3, where the result of multiplication is to be

stored;

2) shifts R2 and R3 four bits (one BCD digit) to left;

3) loads one BCD digit from the higher-order end of the multiplier to R5L, and

branches to step g. when R5L is "0";

4) BCD-adds the multiplicand to R2, R3 the same number of times as the value

in R5L;

5) Decrements R6H; and g. repeats steps c to f above until R6H has become

"0".

6) Terminate the program.

7)

SOURCE CODE

MOV. B #H'04,R6H ;Set bit counter1

MOV. W #H'0000,R2 ;Clear R2

MOV. W R2,R3 ;Clear R3

LBL1

MOV.B #H'04,R6L ;Set bit counter2

MOV. B #H'00,R5L ;Clear R5L

 Periyar University – CDOE| Self-Learning Material

LOOP1

SHLL. B R0L ;Shift multiplier 1 bit left

ROTXL. B R0H

ROTXL. B R5L

SHLL. B R3L ;Shift result 1 bit left

ROTXL. B R3H

ROTXL. B R2L

ROTXL. B R2H

DEC. B R6L ;Decrement bit counter 2

BNE LOOP1 ;Branch if Z=0

CMP.B #H'00,R5L

BEQ LBL2 ;Branch if Z=1

LOOP2

ADD. B R1L,R3L ;R1L + R3L -> R1L

DAA. B R3L ;Decimal adjust R3L

ADDX. B R1H,R3H ;R1H + R3H + C -> R1H

DAA. B R3H ;Decimal adjust R3H

ADDX. B #H'00,R2L ;R2L + #H'00 + C -> R2L

DAA.B R2L ;Decimal adjust R2L

ADDX. B #H'00,R2H ;R2H + #H'00 + C -> R2H

 Periyar University – CDOE| Self-Learning Material

DAA. B R2H ;Decimal adjust R2H

DEC. B R5L ;Clear bit 0 of R5L

BNE LOOP2 ;Branch if Z=0

LBL2 ;

 DEC.B R6H ;Decrement bit counter1

BNE LBL1 ;Branch if Z=0

RTS

END

SAMPLE INPUT & OUTPUT

Input: R 1 – 0 0 8 6

R 0 – 0 0 2 5

Output: R 2 – 0 0 0 0

R 3 – 2 1 5 0

RESULT

Thus the program to BCD Multiplication was executed

 Periyar University – CDOE| Self-Learning Material

8 - BIT DIVISION

AIM:

To perform the division of two 8 bit numbers using 8085

ALGORITHM:

1) Start the program by loading HL register pair with address of memory location.

2) Move the data to a register (B register).

3) Get the second data and load into Accumulator.

4) Compare the two numbers to check for carry.

5) Subtract the two numbers.

6) Increment the value of carry.

7) Check whether repeated subtraction is over and store the value of product and

carry in memory location.

8) Terminate the program.

SOURCE CODE

LXI H, 4150

MOV B, M Get the dividend in B – reg.

MVI C, 00 Clear C – reg for quotient

INX H

MOV A, M Get the divisor in A – reg.

 Periyar University – CDOE| Self-Learning Material

NEXT: CMP B Compare A - reg with register B.

JC LOOP Jump on carry to LOOP

SUB B Subtract A – reg from B- reg.

INR C Increment content of register C.

JMP NEXT Jump to NEXT

LOOP: STA 4152 Store the remainder in Memory

MOV A, C Move the Content of C register to Accumulator

STA 4153 Store the quotient in memory

HLT Terminate the program.

SAMPLE INPUT & OUTPUT

Input: FF (4150)

FF (4251)

Output: 01 (4152) ---- Remainder

FE (4153) ---- Quotient

RESULT

Thus the program to divide two 8-bit numbers was executed

 Periyar University – CDOE| Self-Learning Material

 SORTING AND SEARCHING

Section No Topic Page No

3

Sorting and Searching

1. Searching for an element in an array.

2. Sorting in Ascending and Descending order.

3. Finding the largest and smallest elements in an array.

4. Reversing array elements.

5. Block move.

Searching for an Element in an Array

AIM:

To program in 8085 to search a given number in an array of n numbers.

ALGORITHM:

1) Make the memory pointer points to memory location 2050 by help of LXI H

2050 instruction

2) Store value of array size in register C

3) Store number to be search in register B

4) Increment memory pointer by 1 so that it points to next array index

5) Store element of array in accumulator A and compare it with value of B

6) If both are same i.e. if ZF = 1 then store F0 in A and store the result in

memory location 3051 and go to step 9

7) Otherwise store 0F in A and store it in memory location 3051

8) Decrement C by 01 and check if C is not equal to zero i.e. ZF = 0, if true go to

step 3 otherwise go to step 9

9) End of program

 Periyar University – CDOE| Self-Learning Material

SOURCE CODE

LXI H 2050 H <- 20, L <- 50 initialize register H and L

MOV C, M C <- M H and L  Memory M  Register C

LDA 3050 A <- M[3050] 3050  A

MOV B, A B <- A A  B

INX H HL <- HL + 0001 increment HL by 1

MOV A, M A <- M M  A

CMP B A – B subtract B from A

JNZ 2014 Jump if ZF = 0 jump to memory location 2014

if zero flag is reset i.e. ZF = 0

MVI A F0 A <- F0 F0  A

STA 3051 M[3051] <- A stores value of A in 3051

HLT END

MVI A 0F A <- 0F 0F  A

STA 3051 M[3051] <- A stores value of A in 3051

DCR C C <- C – 01 decrement C by 01

JNZ 2008 Jump if ZF = 0 jump to memory location 2008

if zero flag is reset

HLT END

 Periyar University – CDOE| Self-Learning Material

SAMPLE INPUT & OUTPUT

Input: 04 (2050) 49(2051) F2(2052) 14(2053) 39(2054)

Output: F2(3050) F0(3051)

If number is found, then store F0 in memory location 3051 otherwise store 0F in 3051.

RESULT

Thus the program was executed and verified.

 Periyar University – CDOE| Self-Learning Material

Sorting in Ascending and Descending Order

AIM:

To write a program to find the Ascending and Descending order of n numbers in

a given array.

ALGORITHM:

1) Initialize Order Flag and Array Address: Load order flag (0 for ascending, 1

for descending) into A and store in ORDER_FLAG; load array start address

into HL (LXI H, 2000H).

2) Initialize Loop Counter: Load array size - 1 (15) into register C (MVI C, 0FH).

3) Outer Loop Start: Copy C to D for inner loop (MOV D, C).

4) Inner Loop Start: Reload array address into HL (LXI H, 2000H), load current

element into A (MOV A, M), increment HL to next element (INX H), load next

element into E (MOV E, M), and store it in B (MOV B, M).

5) Compare Elements: Compare current element (A) with next element (E) using

CMP E.

6) Check Order Flag: Load order flag from ORDER_FLAG into A (LDA

ORDER_FLAG), move to E (MOV E, A), check flag (JZ ASC_ORDER), if not

zero, jump to descending order comparison (JMP DESC_ORDER).

7) Ascending Order Comparison: If flag is 0 and current element is less than

next element, skip swap (ASC_ORDER: JC SKIP), else jump to swap (JMP

SWAP).

8) Descending Order Comparison: If flag is 1 and current element is greater than

or equal to next element, skip swap (DESC_ORDER: JNC SKIP).

9) Swap Elements if Needed: Swap elements: move next element to A (SWAP:

MOV A, B), store in memory (MOV M, A), decrement HL (DCX H), store

current element in memory (MOV M, E).

10) Update Memory Pointer: Increment HL to next element (SKIP: INX H).

 Periyar University – CDOE| Self-Learning Material

11) Decrement Inner Loop Counter: Decrement D and repeat inner loop if D > 0

(DCR D, JNZ INNER).

12) Decrement Outer Loop Counter: Decrement C and repeat outer loop if C > 0

(DCR C, JNZ OUTER).

13) End of Program: Halt program (HLT).

SOURCE CODE

ORG 0000H ; Start address

MVI A, 00H ; Set A to 0 for ascending order,

 Set A to 1 for descending order

STA ORDER_FLAG ; Store the order flag

START: LXI H, 2000H ; Load the starting address into HL pair

MVI C, 0FH ; Load the count of elements into reg C

OUTER: MOV D, C ; Copy the count to register D

 LXI H, 2000H ; Reload the starting address into HL

pair

INNER: MOV A, M ; Move the current element into register

A

INX H ; Increment HL

MOV E, M ; Move the next element into register E

MOV B, M ; Move the next element into register B

CMP E ; Compare the element

 Periyar University – CDOE| Self-Learning Material

 LDA ORDER_FLAG ; Load the order flag

MOV E, A ; Move the flag into E

 JZ ASC_ORDER ; If flag is 0, jump to ascending order

 JMP DESC_ORDER ; Else, jump to descending order

ASC_ORDER:

 JC SKIP ; If A < M, skip the swap for ascending order

 JMP SWAP ; Else, swap the elements

DESC_ORDER:

 JNC SKIP ; If A >= M, skip the swap for descending order

 SWAP: MOV A, B ; Move the next element into A

 MOV M, A ; Swap the elements

 DCX H ; Decrement HL back to the current element

 MOV M, E ; Move the current element to the next position

SKIP: INX H ; Increment HL to point to the next element

DCR D ; Decrement the inner loop count

 JNZ INNER ; If inner loop count is not zero, repeat

 DCR C ; Decrement the outer loop count

 JNZ OUTER ; If outer loop count is not zero, repeat

 HLT ; Halt the program

 Periyar University – CDOE| Self-Learning Material

INPUT: Data segment (array of 16 elements)

 ORG 2000H

 DB 0AH, 3CH, 2FH, 19H, 21H, 45H, 39H, 50H

 DB 27H, 1FH, 5AH, 36H, 78H, 4BH, 60H, 2DH

ORDER_FLAG DB 00H ; Flag for order: 0 for ascending, 1 for descending

END ; End of the program

OUTPUT

Memory Location Data

2000H 10H

2001H 12H

2002H 21H

2003H 23H

2004H 33H

2005H 35H

2006H 44H

2007H 54H

2008H 56H

2009H 67H

200AH 67H

200BH 78H

200CH 88H

Memory Location Data

2000H 92H

2001H 90H

2002H 89H

2003H 88H

2004H 78H

2005H 67H

2006H 67H

2007H 56H

2008H 54H

2009H 44H

200AH 35H

200BH 33H

200CH 23H

 Periyar University – CDOE| Self-Learning Material

200DH 89H

200EH 90H

200FH 92H

200DH 21H

200EH 12H

200FH 10H

RESULT

Thus the program was executed and verified.

 Periyar University – CDOE| Self-Learning Material

Finding the largest and smallest elements in an array.

AIM:

To write a program to find the largest and smallest number in a given array

elements.

Algorithm –

1) Maximum number is stored in B register and minimum in C register

2) Load counter in D register

3) Load starting element in Accumulator, B and C register

4) Compare Accumulator and B register

5) If carry flag is not set then transfer contents of Accumulator to B. Else,

compare Accumulator with C register, if carry flag is set transfer contents

of Accumulator to C

6) Decrement D register

7) If D>0 take next element in Accumulator and go to point 4

8) If D=0, store B and C register in memory

9) End of program

Source Code

 LXI H, 2050H Load starting address of list

 MOV B, M Store maximum

 MOV C, M Store minimum

 MVI D, 0AH Counter for 10 elements

LOOP MOV A, M Retrieve list element in Accumulator

 CMP B Compare element with maximum number

 JC MIN Jump to MIN if not maximum

 Periyar University – CDOE| Self-Learning Material

 MOV B, A Transfer contents of A to B as A > B

 MIN CMP C Compare element with minimum number

 JNC SKIP Jump to SKIP if not minimum

 MOV C, A Transfer contents of A to C if A < minimum

 SKIP INX H Increment memory

 DCR D Decrement counter

 JNZ LOOP Jump to LOOP if D > 0

 LXI H, 2060H Load address to store maximum

 MOV M, B Move maximum to 2060H

 INX H Increment memory

 MOV M, C Move minimum to 2061H

 HLT Halt

OUTPUT

LIST

42H 21H 01H 1FH FFH 25H 32H 34H 0AH ABH

Minimum : 01H Maximum: FFH

RESULT

Thus the program was executed and verified.

 Periyar University – CDOE| Self-Learning Material

Reversing Array Elements

AIM:

To write a program to reverse a given array elements.

Algorithm –

1. Load content of memory location 2050 in accumulator A

2. Use RLC instruction to shift the content of A by 1 bit without carry. Use

this instruction 4 times to reverse the content of A

3. Store content of A in memory location 3050

Source Code

 LDA 2050 A <- M[2050]

 RLC Rotate content of accumulator left by 1 bit

 RLC Rotate content of accumulator left by 1 bit

 RLC Rotate content of accumulator left by 1 bit

 RLC Rotate content of accumulator left by 1 bit

 STA 3050 M[2050] <- A

 HLT END

OUTPUT

98H in Binary Written as :

1001 1000

RLC 1st Time : 0011 0001 {Carry Flag = 1}

RLC 2nd Time : 0110 0010 {Carry Flag = 0}

RLC 3rd Time : 1100 0100 {Carry Flag = 0}

RLC 4th Time : 1000 1001 { Carry Flag = 1}

 Periyar University – CDOE| Self-Learning Material

Converted Number after 4th RLC : 1000 1001 [89H]

Hence our number is reversed from 98H to 89H.

RESULT

Thus the program was executed and verified.

 Periyar University – CDOE| Self-Learning Material

Block Move.

AIM:

To write a program to move the Blocks.

Algorithm –

1. Load register pair H-L with the address 2500H

2. Load register pair D-E with the address 2600H

3. Move the content at memory location into accumulator

4. Store the content of accumulator into memory pointed by D-E

5. Increment value of register pair H-L and D-E by 1

6. Decrements value of register C by 1

7. If zero flag not equal to 1, go to step 3

8. Stop

Source Code

 MVI C, 05 [C] <- 05

 LXI H, 2500 [H-L] <- 2500

 LXI D, 2600 [D-E] <- 2600

 MOV A, M [A] <- [[H-L]]

 STAX D [A] -> [[D-E]]

 INX H [H-L] <- [H-L] + 1

 INX D [D-E] <- [D-E] + 1

 DCR C [C] <- [C] – 1

JNZ 2008 Jump if not zero to 2008

 HLT Stop

 Periyar University – CDOE| Self-Learning Material

Input & Output

RESULT

Thus the program was executed and verified.

 Periyar University – CDOE| Self-Learning Material

CODE CONVERSION

Section No Topic Page No

IV Code Conversion

1. BCD to Hex and Hex to BCD

2. Binary to ASCII and ASCII to binary

3. ASCII to BCD and BCD to ASCII

BCD to Hex and Hex to BCD

1 A) BCD to HEX

Aim

To develop a program that converts a Binary-Coded Decimal (BCD) number to its

hexadecimal (Hex) equivalent using a microprocessor.

Algorithm

1. Initialize the BCD input: Load the BCD number into a register.

2. Extract the digits: Separate the BCD number into its individual digits.

3. Convert digits: Convert each BCD digit into its hexadecimal form.

4. Combine digits: Combine the converted hexadecimal digits into a single

hexadecimal number.

5. Store/Display the result: Store or display the hexadecimal result.

Source Code

ORG 0000H

 MVI D, 00H ; Clear D register for storing hex result

 MVI C, 00H ; Clear C register for storing intermediate result

 ; Load BCD number into register A

 Periyar University – CDOE| Self-Learning Material

 MVI A, 27H ; Let's assume BCD number is 27H

; Extract lower BCD digit (units place)

 ANI 0FH ; Mask upper nibble to get lower BCD digit

 MOV B, A ; Store lower digit in B register

; Extract upper BCD digit (tens place)

 MOV A, 27H ; Reload original BCD number

 ANI F0H ; Mask lower nibble to get upper BCD digit

 RRC ; Rotate right to bring upper digit to lower nibble

 RRC

 RRC

 RRC

 MOV C, A ; Store upper digit in C register

 ; Convert BCD digits to Hex

 MOV A, C ; Load upper digit into A

 ADD A, A ; Multiply by 10 (shift left by 4)

 ADD A, A ; Continue multiplication (shift left by 1)

 ADD A, A ; Continue multiplication (shift left by 1)

 ADD A, C ; Add original upper digit to get tens place in hex

 MOV C, A ; Store in C register

MOV A, C ; Load result back into A

 ADD A, B ; Add lower digit

MOV D, A ; Store final result in D register

HLT ; End of program

Sample Output

Assuming the input BCD number is 27H, the sample output after execution will be

stored in the D register.

 Periyar University – CDOE| Self-Learning Material

Result

For the given input 27H (BCD), the hexadecimal equivalent is 1BH. After executing the

program, the D register will contain the value 1BH.

1 B) HEX to BCD

Aim

To develop a program that converts a Hexadecimal (Hex) number to its Binary-Coded

Decimal (BCD) equivalent using a microprocessor.

Algorithm

1. Initialize the Hex input: Load the Hex number into a register.

2. Extract digits: Separate the Hex number into its individual digits.

3. Convert digits: Convert each Hex digit into its BCD form.

4. Combine digits: Combine the converted BCD digits into a single BCD number.

5. Store/Display the result: Store or display the BCD result.

Source Code

ORG 0000H

 MVI D, 00H ; Clear D register for storing BCD result

 MVI E, 00H ; Clear E register for storing intermediate result

 ; Load Hex number into register A

 MVI A, 1BH ; Let's assume Hex number is 1BH

 ; Extract lower Hex digit (units place)

 ANI 0FH ; Mask upper nibble to get lower Hex digit

 MOV B, A ; Store lower digit in B register

 ; Extract upper Hex digit (tens place)

 MOV A, 1BH ; Reload original Hex number

 ANI F0H ; Mask lower nibble to get upper Hex digit

 Periyar University – CDOE| Self-Learning Material

 RRC ; Rotate right to bring upper digit to lower nibble

 RRC

 RRC

 RRC

 MOV C, A ; Store upper digit in C register

 ; Convert Hex digits to BCD

 MOV A, C ; Load upper digit into A

 ADI 03H ; Add 3 times 10 to convert upper hex digit to BCD

 MOV C, A ; Store in C register

 MOV A, B ; Load lower digit into A

 ADD A, C ; Add lower digit

MOV D, A ; Store final result in D register

HLT ; End of program

Sample Output

Assuming the input Hex number is 1BH, the sample output after execution will be stored in the D

register.

Result

For the given input 1BH (Hex), the BCD equivalent is 27H. After executing the program, the D

register will contain the value 27H.

 Periyar University – CDOE| Self-Learning Material

Binary to ASCII and ASCII to binary

1 A) Binary to ASCII

Aim

To develop a program that converts a binary number to its ASCII equivalent using a

microprocessor.

Algorithm

1. Initialize the binary input: Load the binary number into a register.

2. Convert to Decimal: Convert the binary number to its decimal equivalent.

3. Convert to ASCII: Convert each decimal digit to its ASCII equivalent.

4. Store/Display the result: Store or display the ASCII result.

Source Code

ORG 0000H

 ; Load binary number into register A (let's assume the

binary number is 1101, which is 13 in decimal)

 MVI A, 0DH ; Binary 1101 in decimal is 13 (0DH in hexadecimal)

 ; Convert binary to decimal (since the number is

already in decimal form in A, we can use it directly)

 ; The number 13 will be split into two digits: '1' and '3'

; Extract tens place (1 in this case)

 MVI B, 0AH ; Load 10 into B for division

 MOV C, A ; Copy A to C for division

 MVI D, 00H ; Clear D for storing the quotient

 CALL DIVISION ; Perform division (C / B)

 MOV E, A ; Store quotient (tens place) in E

 ; Multiply quotient by 10 to get tens value (10 in this case)

 MOV A, E ; Move tens place to A

 Periyar University – CDOE| Self-Learning Material

 MOV B, 0AH ; Load 10 into B

 CALL MULTIPLY ; Perform multiplication

 MOV E, A ; Store result in E (E now contains 10)

 ; Subtract the tens value from the original number to get the

units place

 MOV A, C ; Load original number (13) into A

 SUB E ; Subtract tens value (10) from A

 MOV D, A ; Store result (units place) in D

 ; Convert tens place to ASCII

 MOV A, E ; Load tens place into A

 ADI 30H ; Add 30H to convert to ASCII

 STA 8000H ; Store the ASCII character at memory location 8000H

 ; Convert units place to ASCII

 MOV A, D ; Load units place into A

 ADI 30H ; Add 30H to convert to ASCII

 STA 8001H ; Store the ASCII character at memory location 8001H

HLT ; End of program

; Subroutine for division

DIVISION:

 MVI D, 00H ; Clear D for quotient

 DIV_LOOP:

 CMP B ; Compare A with B

 JC DIV_END ; If A < B, end division

 SUB B ; A = A - B

 INR D ; Increment D (quotient)

 JMP DIV_LOOP; Repeat loop

 DIV_END:

 MOV A, D ; Move quotient to A

 RET

; Subroutine for multiplication

 Periyar University – CDOE| Self-Learning Material

MULTIPLY:

 MVI D, 00H ; Clear D for product

 MUL_LOOP:

 CMP C ; Compare C with 0

 JZ MUL_END ; If C == 0, end multiplication

 ADD A ; A = A + A

 DCR C ; Decrement C

 JMP MUL_LOOP; Repeat loop

 MUL_END:

 RET

Sample Output

Assuming the input binary number is 1101 (which is 13 in decimal), the sample output

after execution will store the ASCII characters for '1' and '3' in memory locations 8000H

and 8001H respectively.

Result

For the given input 1101 (binary), the ASCII equivalent is '13'. After executing the

program, the memory locations 8000H and 8001H will contain the values 31H (ASCII for

'1') and 33H (ASCII for '3') respectively.

 Periyar University – CDOE| Self-Learning Material

1 B) ASCII to BINARY

Aim

To develop a program that converts an ASCII character representing a decimal digit to

its binary equivalent using a microprocessor.

Algorithm

1. Initialize the ASCII input: Load the ASCII character into a register.

2. Convert to Decimal: Subtract 30H from the ASCII value to get the decimal digit.

3. Convert to Binary: The result is already in binary format as a single decimal

digit.

4. Store/Display the result: Store or display the binary result.

Source Code

ORG 0000H ; Load ASCII character into register A (let's assume

the ASCII character is '5', which is 35H in ASCII)

 MVI A, 35H ; ASCII for '5'

; Convert ASCII to Decimal (subtract 30H from ASCII value)

 SUI 30H ; Subtract 30H to get decimal digit (5 in this case) ; The

result in A is now the binary equivalent of the ASCII character

 STA 8000H ; Store the binary result at memory location 8000H

HLT ; End of program

Sample Output

Assuming the input ASCII character is 35H ('5'), the sample output after execution will

store the binary value 05H in memory location 8000H.

Result

For the given input 35H (ASCII for '5'), the binary equivalent is 00000101 (5 in decimal).

 Periyar University – CDOE| Self-Learning Material

ASCII to BCD and BCD to ASCII

ASCII to BCD

Aim

To develop a program that converts an ASCII character representing a decimal digit to

its Binary-Coded Decimal (BCD) equivalent using a microprocessor.

Algorithm

1. Initialize the ASCII input: Load the ASCII character into a register.

2. Convert to Decimal: Subtract 30H from the ASCII value to get the decimal digit.

3. Convert to BCD: The result is already in BCD format as it is a single decimal

digit.

4. Store/Display the result: Store or display the BCD result.

Source Code

ORG 0000H

 ; Load ASCII character into register A (let's assume the ASCII

character is '5', which is 35H in ASCII)

 MVI A, 35H ; ASCII for '5'

 ; Convert ASCII to Decimal (subtract 30H from ASCII value)

 SUI 30H ; Subtract 30H to get decimal digit (5 in this case)

 ; The result in A is now the BCD equivalent of the ASCII

character

 STA 8000H ; Store the BCD result at memory location 8000H

HLT ; End of program

 Periyar University – CDOE| Self-Learning Material

Sample Output

Assuming the input ASCII character is 35H ('5'), the sample output after execution will

store the BCD value 05H in memory location 8000H.

Result

For the given input 35H (ASCII for '5'), the BCD equivalent is 05H. After executing the

program, the memory location 8000H will contain the value 05H.

.

 Periyar University – CDOE| Self-Learning Material

BCD to ASCII

Aim

To develop a program that converts a Binary-Coded Decimal (BCD) number to its ASCII

equivalent using a microprocessor.

Algorithm

1. Initialize the BCD input: Load the BCD number into a register.

2. Convert to Decimal: The BCD number is already in decimal form, so no

conversion is needed.

3. Convert to ASCII: Add 30H to the decimal digit to get its ASCII equivalent.

4. Store/Display the result: Store or display the ASCII result.

Source Code

ORG 0000H ; Load BCD number into register A

 MVI A, 05H ; BCD for 5

 ; Convert BCD to ASCII (add 30H to the BCD value)

 ADI 30H ; Add 30H to get ASCII value for '5'

; The result in A is now the ASCII equivalent of the BCD number

 STA 8000H ; Store the ASCII result at memory location 8000H

HLT ; End of program

Sample Output

Assuming the input BCD number is 05H, the sample output after execution will store the

ASCII value 35H in memory location 8000H.

Result

For the given input 05H (BCD for 5), the ASCII equivalent is 35H (ASCII for '5').

 Periyar University – CDOE| Self-Learning Material

SIMPLE PROGRAMS ON 8051 MICROCONTROLLER

Section No Topic Page No

V Simple programs on 8051 Microcontroller

1. Addition

2. Subtraction

3. Multiplication

4. Division

5. Interfacing Experiments using 8051

 Realisation of Boolean Expression through ports.

 Time delay generation using subroutines.

 Display LEDs through ports

Addition

Aim

To develop a program that performs the addition of two 8-bit numbers using the 8051

microcontroller.

Algorithm

1. Initialize the first number: Load the first number into register A.

2. Initialize the second number: Load the second number into another register

(e.g., R0).

3. Perform Addition: Add the two numbers and store the result in register A.

4. Store/Display the result: Store the result in a memory location or output port.

Source Code

ORG 0000H ; Load the first number into register A

 Periyar University – CDOE| Self-Learning Material

 MOV A, #25H ; Let's assume the first number is 25H

; Load the second number into register R0

 MOV R0, #17H ; Let's assume the second number is 17H

; Perform the addition

 ADD A, R0 ; Add the contents of R0 to A

; Store the result in memory location 30H

 MOV 30H, A ; Store the result at memory location 30H

 ; End of program

 SJMP $

Sample Output

Assuming the input numbers are 25H and 17H, the sample output after execution will

store the result 3CH in memory location 30H.

Result

For the given inputs 25H and 17H, the addition result is 3CH. After executing the

program, the memory location 30H will contain the value 3CH.

 Periyar University – CDOE| Self-Learning Material

Subtraction

Aim

To develop a program that performs the subtraction of two 8-bit numbers using the 8051

microcontroller.

Algorithm

1. Initialize the first number: Load the first number into register A.

2. Initialize the second number: Load the second number into another register

(e.g., R0).

3. Perform Subtraction: Subtract the second number from the first number and

store the result in register A.

4. Store/Display the result: Store the result in a memory location or output port.

Source Code

ORG 0000H

 ; Load the first number into register A

 MOV A, #25H ; Let's assume the first number is 25H

; Load the second number into register R0

 MOV R0, #17H ; Let's assume the second number is 17H

; Perform the subtraction

 SUBB A, R0 ; Subtract the contents of R0 from A

 ; Store the result in memory location 30H

 MOV 30H, A ; Store the result at memory location 30H

 ; End of program

 SJMP $

 Periyar University – CDOE| Self-Learning Material

Sample Output

Assuming the input numbers are 25H and 17H, the sample output after execution will

store the result 0EH in memory location 30H.

Result

For the given inputs 25H and 17H, the subtraction result is 0EH. After executing the

program, the memory location 30H will contain the value 0EH.

 Periyar University – CDOE| Self-Learning Material

Multiplication

Aim

To develop a program that performs the multiplication of two 8-bit numbers using the

8051 microcontroller.

Algorithm

1. Initialize the first number: Load the first number into register A.

2. Initialize the second number: Load the second number into register B.

3. Perform Multiplication: Use the MUL AB instruction to multiply the numbers in

registers A and B.

4. Store/Display the result: Store the result in designated registers or memory

locations.

Source Code

ORG 0000H ; Load the first number into register A

 MOV A, #12H ; Let's assume the first number is 12H

 ; Load the second number into register B

 MOV B, #0AH ; Let's assume the second number is 0AH

 ; Perform the multiplication

 MUL AB ; Multiply A and B, result is in A (lower byte) B (upper

byte)

 ; Store the result in memory locations 30H (low byte) and

31H (high byte)

 MOV 30H, A ; Store the low byte of the result at memory location 30H

 MOV 31H, B ; Store the high byte of the result at memory location

31H

 ; End of program

 SJMP $

 Periyar University – CDOE| Self-Learning Material

Sample Output

Assuming the input numbers are 12H and 0AH, the sample output after execution will

store the result 00H (high byte) and C0H (low byte) in memory locations 31H and 30H

respectively.

Result

For the given inputs 12H and 0AH, the multiplication result is 00C0H (192 in decimal).

 Periyar University – CDOE| Self-Learning Material

Division

Aim

To develop a program that performs integer division of two 8-bit numbers using the

8051 microcontroller.

Algorithm

1. Initialize the dividend: Load the dividend into register A.

2. Initialize the divisor: Load the divisor into register B.

3. Perform Division:

o Subtract the divisor from the dividend until the dividend is less than the

divisor.

o Count the number of subtractions to get the quotient.

o The remainder is left in register A after the division process.

4. Store/Display the result: Store the quotient and remainder in designated

registers or memory locations.

Source Code

ORG 0000H ; Load the dividend into register A

 MOV A, #75 ; Let's assume the dividend is 75

; Load the divisor into register B

 MOV B, #10 ; Let's assume the divisor is 10

; Initialize the quotient and remainder

 MOV R2, #00H ; Quotient (initialize to 0)

 MOV R3, A ; Remainder (initialize to the dividend)

DIV_LOOP:

 ; Subtract the divisor from the remainder

 SUBB A, B

 Periyar University – CDOE| Self-Learning Material

 ; If A is still positive, increment the quotient and

repeat

 JNC DIV_LOOP_END

 INC R2

 SJMP DIV_LOOP

DIV_LOOP_END:

 ; The remainder is in A, quotient is in R2

 ; Store the quotient and remainder in memory

 MOV 30H, R2 ; Store quotient at memory location 30H

 MOV 31H, A ; Store remainder at memory location 31H

; End of program

 SJMP $

Sample Output

Assuming the input numbers are 75 (dividend) and 10 (divisor), the sample output after

execution will store the quotient 7 and remainder 5 in memory locations 30H and 31H

respectively.

Result

For the given inputs 75 (dividend) and 10 (divisor):

 The quotient is 7.

 The remainder is 5. After executing the program, the memory location 30H will

contain the quotient 07H and 31H will contain the remainder 05H.

 Periyar University – CDOE| Self-Learning Material

Interfacing Experiments using 8051

1. Realisation of Boolean Expression through ports.

Aim

To develop an experiment using the 8051 microcontroller to realize a Boolean

expression through its ports.

Algorithm

1. Initialize the ports: Configure the ports of the 8051 microcontroller for input and

output.

2. Implement the Boolean expression: Write the code to evaluate a Boolean

expression using the inputs from the ports.

3. Display the result: Output the result of the Boolean expression using the LEDs

connected to the ports.

Source Code:

ORG 0000H ; Configure Port 0 (P0) for input (switches)

 MOV P0, #0FFH ; Configure P0.0-P0.7 as input

; Configure Port 1 (P1) for output (LEDs)

 MOV P1, #00H ; Initialize P1.0-P1.7 as output

; Read inputs (switches)

 MOV A, P0 ; Read the state of Port 0 (switches)

; Extract variables from inputs

 MOV B, A ; Store inputs in register B

; Implement Boolean expression: Y = A * B' + C

 ; A is connected to P0.0, B is connected to P0.1, and C is

connected to P0.2

 MOV C, A ; Move inputs to C

 ANL C, #01H ; A AND B

 Periyar University – CDOE| Self-Learning Material

 ANL A, #02H

Result:

Thus the program was executed successfully

 Periyar University – CDOE| Self-Learning Material

2. Time delay generation using subroutines.

Aim

To develop an experiment using the 8051 microcontroller to generate time delays using

subroutines.

Algorithm

1. Initialize the ports: Configure the ports of the 8051 microcontroller for output

(LEDs).

2. Implement time delay subroutine: Write a subroutine to generate a specific

time delay.

3. Call the subroutine: Call the subroutine from the main program to generate the

desired time delay.

4. Display the time delay: Use LEDs to indicate the duration of the time delay.

Source Code

ORG 0000H ; Configure Port 1 (P1) for output (LEDs)

 MOV P1, #00H ; Initialize P1.0-P1.7 as output

; Main program loop

MAIN:

 ; Generate a delay of 1 second (assuming a clock frequency

of 11.0592 MHz)

 CALL DELAY_1S ; Toggle LEDs on Port 1

 CPL P1

 SJMP MAIN ; Loop indefinitely

; Subroutine to generate a delay of approximately 1 second

DELAY_1S:

 MOV R2, #250 ; Initialize outer loop counter

OUTER_LOOP:

 MOV R1, #250 ; Initialize inner loop counter

 Periyar University – CDOE| Self-Learning Material

INNER_LOOP:

 DJNZ R1, INNER_LOOP ; Decrement R1, jump if not zero

 DJNZ R2, OUTER_LOOP ; Decrement R2, jump if not zero

 RET ; Return from subroutine

Sample Input and Output

 Input: None (switches or external input are not used in this example)

 Output: LEDs on Port 1 will toggle every second

Result

 LEDs connected to Port 1 will toggle every second, indicating the successful

generation of the time delay.

 Periyar University – CDOE| Self-Learning Material

3. Display LEDs through ports

Aim

To develop an experiment using the 8051 microcontroller to display LEDs through its

ports.

Algorithm

1. Initialize the ports: Configure the ports of the 8051 microcontroller for output

(LEDs).

2. Toggle LEDs: Write a program to toggle LEDs connected to the ports.

3. Display the output: Observe the LEDs to verify they are toggling correctly.

Experiment Setup

 Outputs: LEDs connected to Port 1 (P1).

Source Code

ORG 0000H ; Configure Port 1 (P1) for output (LEDs)

 MOV P1, #00H ; Initialize P1.0-P1.7 as output

; Main program loop

MAIN:

 ; Toggle LEDs on Port 1

 CPL P1 ; Complement all bits of P1

 ; Generate a short delay to see LED blinking (assuming a

clock frequency of 11.0592 MHz)

 CALL DELAY_SHORT

 Periyar University – CDOE| Self-Learning Material

 SJMP MAIN ; Loop indefinitely

; Subroutine to generate a short delay

DELAY_SHORT:

 MOV R2, #20 ; Outer loop counter

OUTER_LOOP:

 MOV R1, #30 ; Inner loop counter

INNER_LOOP:

 DJNZ R1, INNER_LOOP ; Decrement R1, jump if not zero

 DJNZ R2, OUTER_LOOP ; Decrement R2, jump if not zero

 RET ; Return from subroutine

Sample Input and Output

 Input: None (switches or external input are not used in this example)

 Output: LEDs on Port 1 will toggle on and off, creating a blinking effect.

Result

 LEDs connected to Port 1 will blink on and off, indicating successful interfacing

and program execution.

